
COMP 110/L Lecture 8
Mahdi Ebrahimi

Slides adapted from Dr. Kyle Dewey

Outline

• public / private

• “Getters” and“Setters”

• toString() method

• Memory representation

Review
Coding a basic calculator program in 3 approaches

BasicCalculator.java

Procedural Programming (PP) (using methods)

BasicCalculatorPP.java

Object Oriented Programming (OOP) (using class and object)

BasicCalculatorOO.java

public / private

public
Means it can be accessed from anywhere

public
Means it can be accessed from anywhere

public class PublicClass {
public int i;
public PublicClass(int x) {
i = x;

}
public void printI() {
System.out.println(i);

}
}

Example

•PublicClass.java

•PublicClassMain.java

private
Means it can be accessed from only within the class

private
Means it can be accessed from only within the class

public class PrivateClass {
private int i;
private PrivateClass(int x) {
i = x;

}
private void printI() {
System.out.println(i);

}
}

Example

•PrivateClass.java

•PrivateClassMain.java

Why public /
private?

• Intentionally allows / disallows certain
interactions between objects

• Stove example:perhaps only the stove can
turn its burner on - make it private

• Commonly used to force changes to
instance variables to go through methods
(much more predictable)

“Getters” and “Setters”

Getters
Methods that return the value of an instance variable.

Generally, the instance variable is private.

Getters
Methods that return the value of an instance variable.

Generally, the instance variable is private.

public class HasGetter {
private int saved;
public HasGetter(int x) {
saved = x;

}
public int getSaved() {

return saved;
}

}

Example:
HasGetter.java

Setters
Methods that change the value of an instance variable.

The instance variable is generally private.

Setters
Methods that change the value of an instance variable.

The instance variable is generally private.

public class HasSetter {
private int saved;
public HasSetter(int x) {
saved = x;

}
public void setSaved(int to) {

saved = to;
}

}

Example:
HasSetter.java

Getter / Setter Purpose

• Access to instance variables forced to
occur only via get* and set* methods

• These are the only points where change
can occur

• Much easier to predict and debug

toString() Method

toString()
Method used to convert an object to a String.

Called automatically in String contexts.

toString()
Method used to convert an object to a String.

Called automatically in String contexts.

public class HasToString {
private String held;
public HasToString(String s) {

held = s;
}
public String toString() {

return held;
}

}

Example:
HasToString.java

Memory
Representation

On new
Each use of new creates a new object in memory.

new Foo();
new Bar();

On new
Each use of new creates a new object in memory.

Foo

On new
Each use of new creates a new object in memory.

new Foo();
new Bar();

In Memory

Bar

What new Returns
• new returns a reference to the created object

• References can be copied just like int,
double, etc.

• Copying a reference does not copy the
underlying object

-This is the difference between copying a house and copying an address.
- References act like addresses (and some languages even call them addresses!)

What new Returns
• new returns a reference to the created object

• References can be copied just like int,
double, etc.

• Copying a reference does not copy the
underlying object

Foo f1 = new Foo();
Foo f2 = f1;

-This is the difference between copying a house and copying an address. References act like
addresses (and some languages even call them addresses!)

What new Returns
• new returns a reference to the created object

• References can be copied just like int,
double, etc.

• Copying a reference does not copy the
underlying object

f1

f2

Foo f1 = new Foo();
Foo f2 = f1;

Foo

-This is the difference between copying a house and copying an address. References act like
addresses (and some languages even call them addresses!)

